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Comment on “Performance of different synchronization measures in real data:
A case study on electroencephalographic signals”
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Quian Quirogeet al.[Phys. Rev. B65, 041903(2002] reported a similar performance of several linear and
nonlinear measures of synchronization when applied to the rat electrocorticég@o@). However, they
found that the mutual information measure did not produce robust estimates of synchronization when com-
pared to other measures. We reexamined their data using a histogram method with adaptive partitioning and
found the mutual information to be a useful measure of regional ECoG interdependence.
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In a recent papefl], Quian Quirogaet al. studied the method suggested by Fraser and Swinfig} to the data
synchronization of the rat electrocorticogrdBCoG using  provided by Quian Quirogg6]. This method may provide a
various measures applied to real data. They studied thrdeetter estimate of the probablity distributions with fewer
ECoG states in a rat model of geneabsenceepilepsy and  points. We also compared these results with a fixed bin-width
compared its activity between left and right hemisphereshistogram method of estimating the probability distributions.
The first state, their exampks, represented the background The fixed bin width was 1/9 on data normalized to the inter-
condition and the remaining two, their exampBsand C,  val [0,1].
represented seizures with repetitive spike discharges. Their In their implementation of adaptive partitioning, Fraser
measures included nonlinear interdependencies, phase syand Swinney{5] introduced the method of “interleaving.”
chronizations, mutual information, cross correlation, and théThat is, assume that two datasexss (xq,X,, . .. ,Xy) and
coherence function. They concluded that except for the mea¥=(y,,y,, ....,yn), are being compared and that the values
sure of mutual information, their linear and nonlinear mea-of the x's and they’s are between 0 and (2 1), wheren is
sures provided qualitatively similar results. Interhemispherican integer. Let
synchronization was highest in examBe followed by A,
and thenC. However, the nonlinear synchronization mea- xe=ay ‘tap 2---ap and y,=bp tbp % by (1)
sures were more sensitive, supporting their value for the
analysis of real data. An additional important and clinicallyPe the binary representations ®f and y, respectively,
relevant observation was that these quantitative measurdéherea; * is the most significant bit ot , ap~* the second
showed hemispheric interdependencies that were not appanost significant bit, etc., and the same with thes with

ent by traditional visual analysis. respect toy, . These bits are then interleaved to form
The authors felt that the small number of data points Nl de 22 000
(1000 was responsible for the failure of mutual information ze=(a, "b (ay by ) (agby) 2

to provide robust estimates of interhemispheric synchroniza- . » ) )
tion. In their method, they estimated the Shannon entrop nd used to calculate the joint probability density. The inter-
using the first-order correlation integral. They used a fixed®@ved numbee, gives the address okf,y,) in a partition
time lag =2, embedding dimensions ranging fram= 1 that consists of up to %2 bins. Fraser and Swinney took
(no embeddingto m=50, and they systematically varied the 2dvantage of the ability to stop at any desired level of parti-
radius of the correlation sum. At higher embedding dimendion to adapt local bin sizes to local densities in their calcu-
sions, the increasingly sparse data degraded the estimation@fion of the mutual information. .

the joint probability distribution. This was more apparent ' N€ technique of interleaving may also be used to imple-
when the signal contained high amplitude transients reprel€nt time-delay embedding. Using the notation of E,

senting epileptic spikes. As a result, mutual information didthe m-dimensional embedding vector - Uy
not rank the relative internemispheric synchrony of the three= (Xi:Xk+7» - - - X+ (m-1)r) May be represented as
ECoG conditions in the consistent fashion shown by the n

— -1,n-1 n—-1
other measuresB(>A>C). U= Wi= (@ 47 8kt (m-1)7)

In general, the nonstationarity of biological signals, and
the resulting restrictions on data size, has limited the appli-
cation of time serie$2], information[3], and nonlineaf4] X (agag, ;- gy (m-1)7) 3
methods to the analysis of brain electrical activity. Recogniz-
ing these restrictions, we reexamined the utility of the mutuah single number representing the embedding vector which, at
information measure by applying the adaptive partitioningthe same time, gives its tree address inralimensional

n-2,n-2 n-2
X(ay “ayir - 8k (m-1)r)
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FIG. 1. Applying the adaptive partitioning method to the three FIG. 2._ Box plqt_s o_f average mutu_al information calculated with
examples of rat ECoG using a sliding 512-point window demon-the adaptive partitioning method using the three examples of rat
strates the nonstationarity of the datasets. The fixed bin-width hisEC0G for all embedding windows generatedy-1-10 and lag
togram method produces the same pattern. 7=1-30. The relationshiB>A>C is evident.

of Quian Quirogaet al, as shown in Fig. 8 of their paper.
his pattern can be explained by examining the effect of
sparse data on the histogram method.

Expectations are based on the presumption that the prob-

- o s ability distributions are dense in the sample space. If one
ability that the distribution of points in the cell has Strucwre'considersx andY asN uniformly distributed random num-

First, the stationarity of the three ECoG examples wa ' gy s
explored using a 512-point sliding window. Without embed-sielrflil tg e: rlr}zrg;r:]?:ilpang 11/?\l|9t T%rg ?:Sblljl;ttilﬁ; n\ﬁﬁ: ir:pf]?)r-
) y 1 X,y .

ding (m=1), the qdapnve partitioning and f|_xed-b|n meth- mation would be zero. However, when sparse data are scat-
ods produced qualitatively similar patterns with expected re:

lationship of B>A>C. This relation was also found by tered into a large multidimensional embedding space, it be-
Quian Quirogeet al. when the radius of the correlation sum

space. These numbers are converted to decimal and used
inputs in the Fraser-Swinney algorithm for unembedded dat
We differ from the original implementation in that we parti-
tion a cell only if there is a better than90%y square prob-

10 T T T

was greater than 0.15. However, Fig. 1 shows that the latte = ampe T .
portions of the data segments have qualities that reduce th oy esamlec R 4

relative differences between the three ECoG conditions, in-
dicating the nonstationary nature of the datasets. In a more
recent work, Quian Quirogat al. [7] have also noted this
nonstationarity.

Next, the adaptive partitioning method was applied to em-
bedded data using time lags frors1 to =30 and embed-
ding dimensions fronom=1 to m=10. This limited the em-
bedding window to ih— 1), and restricted the analysis to
512 embedded vectors obtained from the initial portion of
each dataset. The resulting surfaces were characterized by
rapid rise of average mutual information to a relative plateau,
despite increasing embedding dimension. There was variabil
ity with increasing time lag, but the expected relationship of
B>A>C was always present, as shown in Fig. 2.

Finally, when the same approach was taken using the Embedding dimension
fixed bin-width hiStO_gram m_ethOd’ there were two mgjor dif- £, 3. When calculated with a fixed bin-width histogram
ferences. Mutual information values were considerablyyemoq, the average mutual information of rat ECoG increases rap-
higher and they continued to rise with increasing embeddingyy \ith increasing embedding dimensigtag, 7=10). The aver-
dimension. Although the expected relationshipBot A>C  59e mutual information of examplé becomes greater tha at
was present witim=1 andm=2, the average mutual infor- embedding dimensiorm=>2. However, uniformly distributed ran-
mation of exampléA dominated am>2, as shown in Fig. 3. dom data N=1000) display the same pattern and approach the
This pattern of increasing average mutual information withtheoretical maximum of logN) when disperesed into expanding
increasing embedding dimension was also seen in the resuksnbedding space.

Average mutual information
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comes unlikely that more than one point is present in any one Departures from stationarity are common with ECoG sig-
histogram bin. In this case, the joint probability is closer tonals, and the impulse to increase the size of the dataset to
1/N than 1N2. The resulting mutual information would be improve the performance of both linear and nonlinear mea-
log,(N). When our fixed bin-width histogram method was sures should be carefully considered. The histogram method
applied to sets oN=1000 embedded uniformly distributed of adaptive bin partitioning outlined by Fraser and Swinney
random numbers, the resulting average mutual informatiof5] produces values consistent with other measures of syn-
value rose quickly with increasing embedding dimension andhronization, even when a limited number of data points are
rapidly approached Ig¢N), as shown by the dash-dotted line dispersed into an increasingly large embedding space. We
in Fig. 3. In stark contrast, the average mutual information ofconclude that mutual information can provide a useful quan-
the same random numbers calculated with the adaptive higification of regional EEG interdependence if the method is
togram method had a median of ¥10 ° and did not ex- adapted to the character of the biological signal, including
ceed 0.02. nonstationarity and limited data samples.
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