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Comment on ‘‘Performance of different synchronization measures in real data:
A case study on electroencephalographic signals’’
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Quian Quirogaet al. @Phys. Rev. E65, 041903~2002!# reported a similar performance of several linear and
nonlinear measures of synchronization when applied to the rat electrocorticogram~ECoG!. However, they
found that the mutual information measure did not produce robust estimates of synchronization when com-
pared to other measures. We reexamined their data using a histogram method with adaptive partitioning and
found the mutual information to be a useful measure of regional ECoG interdependence.
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In a recent paper@1#, Quian Quirogaet al. studied the
synchronization of the rat electrocorticogram~ECoG! using
various measures applied to real data. They studied t
ECoG states in a rat model of genetic~absence! epilepsy and
compared its activity between left and right hemispher
The first state, their exampleA, represented the backgroun
condition and the remaining two, their examplesB and C,
represented seizures with repetitive spike discharges. T
measures included nonlinear interdependencies, phase
chronizations, mutual information, cross correlation, and
coherence function. They concluded that except for the m
sure of mutual information, their linear and nonlinear me
sures provided qualitatively similar results. Interhemisphe
synchronization was highest in exampleB, followed by A,
and thenC. However, the nonlinear synchronization me
sures were more sensitive, supporting their value for
analysis of real data. An additional important and clinica
relevant observation was that these quantitative meas
showed hemispheric interdependencies that were not ap
ent by traditional visual analysis.

The authors felt that the small number of data poi
~1000! was responsible for the failure of mutual informatio
to provide robust estimates of interhemispheric synchron
tion. In their method, they estimated the Shannon entr
using the first-order correlation integral. They used a fix
time lag t52, embedding dimensions ranging fromm51
~no embedding! to m550, and they systematically varied th
radius of the correlation sum. At higher embedding dime
sions, the increasingly sparse data degraded the estimati
the joint probability distribution. This was more appare
when the signal contained high amplitude transients re
senting epileptic spikes. As a result, mutual information
not rank the relative interhemispheric synchrony of the th
ECoG conditions in the consistent fashion shown by
other measures (B.A.C).

In general, the nonstationarity of biological signals, a
the resulting restrictions on data size, has limited the ap
cation of time series@2#, information @3#, and nonlinear@4#
methods to the analysis of brain electrical activity. Recogn
ing these restrictions, we reexamined the utility of the mut
information measure by applying the adaptive partition
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method suggested by Fraser and Swinney@5# to the data
provided by Quian Quiroga@6#. This method may provide a
better estimate of the probablity distributions with few
points. We also compared these results with a fixed bin-wi
histogram method of estimating the probability distribution
The fixed bin width was 1/9 on data normalized to the int
val @0,1#.

In their implementation of adaptive partitioning, Fras
and Swinney@5# introduced the method of ‘‘interleaving.’
That is, assume that two datasets,X5(x1 ,x2 , . . . ,xN) and
Y5(y1 ,y2 , . . . ,yN), are being compared and that the valu
of thex’s and they’s are between 0 and (2n21), wheren is
an integer. Let

xk5ak
n21ak

n22
•••ak

0 and yk5bk
n21bk

n22
•••bk

0 ~1!

be the binary representations ofxk and yk , respectively,
whereak

n21 is the most significant bit ofxk , ak
n22 the second

most significant bit, etc., and the same with thebk’s with
respect toyk . These bits are then interleaved to form

zk5~ak
n21bk

n21!~ak
n22bk

n22!•••~ak
0bk

0! ~2!

and used to calculate the joint probability density. The int
leaved numberzk gives the address of (xk ,yk) in a partition
that consists of up to 22n bins. Fraser and Swinney too
advantage of the ability to stop at any desired level of pa
tion to adapt local bin sizes to local densities in their calc
lation of the mutual information.

The technique of interleaving may also be used to imp
ment time-delay embedding. Using the notation of Eq.~2!,
the m-dimensional embedding vector uk
5(xk ,xk1t , . . . ,xk1(m21)t) may be represented as

uk→wk5~ak
n21ak1t

n21
•••ak1(m21)t

n21 !

3~ak
n22ak1t

n22
•••ak1(m21)t

n22 !•••

3~ak
0ak1t

0
•••ak1(m21)t

0 !, ~3!

a single number representing the embedding vector which
the same time, gives its tree address in anm-dimensional
©2003 The American Physical Society01-1
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space. These numbers are converted to decimal and us
inputs in the Fraser-Swinney algorithm for unembedded d
We differ from the original implementation in that we par
tion a cell only if there is a better than;90%x square prob-
ability that the distribution of points in the cell has structu

First, the stationarity of the three ECoG examples w
explored using a 512-point sliding window. Without embe
ding (m51), the adaptive partitioning and fixed-bin met
ods produced qualitatively similar patterns with expected
lationship of B.A.C. This relation was also found b
Quian Quirogaet al. when the radius of the correlation su
was greater than 0.15. However, Fig. 1 shows that the la
portions of the data segments have qualities that reduce
relative differences between the three ECoG conditions,
dicating the nonstationary nature of the datasets. In a m
recent work, Quian Quirogaet al. @7# have also noted this
nonstationarity.

Next, the adaptive partitioning method was applied to e
bedded data using time lags fromt51 to t530 and embed-
ding dimensions fromm51 to m510. This limited the em-
bedding window to (m21)t, and restricted the analysis t
512 embedded vectors obtained from the initial portion
each dataset. The resulting surfaces were characterized
rapid rise of average mutual information to a relative plate
despite increasing embedding dimension. There was varia
ity with increasing time lag, but the expected relationship
B.A.C was always present, as shown in Fig. 2.

Finally, when the same approach was taken using
fixed bin-width histogram method, there were two major d
ferences. Mutual information values were considera
higher and they continued to rise with increasing embedd
dimension. Although the expected relationship ofB.A.C
was present withm51 andm52, the average mutual infor
mation of exampleA dominated atm.2, as shown in Fig. 3.
This pattern of increasing average mutual information w
increasing embedding dimension was also seen in the re

FIG. 1. Applying the adaptive partitioning method to the thr
examples of rat ECoG using a sliding 512-point window dem
strates the nonstationarity of the datasets. The fixed bin-width
togram method produces the same pattern.
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of Quian Quirogaet al., as shown in Fig. 8 of their pape
This pattern can be explained by examining the effect
sparse data on the histogram method.

Expectations are based on the presumption that the p
ability distributions are dense in the sample space. If o
considersX andY as N uniformly distributed random num
bers, the marginal and joint probabilities would bepx
51/N, py51/N, andpx,y51/N2. The resulting mutual infor-
mation would be zero. However, when sparse data are s
tered into a large multidimensional embedding space, it

-
s-

FIG. 2. Box plots of average mutual information calculated w
the adaptive partitioning method using the three examples of
ECoG for all embedding windows generated bym51 –10 and lag
t51 –30. The relationshipB.A.C is evident.

FIG. 3. When calculated with a fixed bin-width histogra
method, the average mutual information of rat ECoG increases
idly with increasing embedding dimension~lag, t510). The aver-
age mutual information of exampleA becomes greater thanB at
embedding dimension,m.2. However, uniformly distributed ran
dom data (N51000) display the same pattern and approach
theoretical maximum of log2(N) when disperesed into expandin
embedding space.
1-2
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comes unlikely that more than one point is present in any
histogram bin. In this case, the joint probability is closer
1/N than 1/N2. The resulting mutual information would b
log2(N). When our fixed bin-width histogram method wa
applied to sets ofN51000 embedded uniformly distribute
random numbers, the resulting average mutual informa
value rose quickly with increasing embedding dimension a
rapidly approached log2(N), as shown by the dash-dotted lin
in Fig. 3. In stark contrast, the average mutual information
the same random numbers calculated with the adaptive
togram method had a median of 1.131025 and did not ex-
ceed 0.02.
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Departures from stationarity are common with ECoG s
nals, and the impulse to increase the size of the datase
improve the performance of both linear and nonlinear m
sures should be carefully considered. The histogram met
of adaptive bin partitioning outlined by Fraser and Swinn
@5# produces values consistent with other measures of s
chronization, even when a limited number of data points
dispersed into an increasingly large embedding space.
conclude that mutual information can provide a useful qu
tification of regional EEG interdependence if the method
adapted to the character of the biological signal, includ
nonstationarity and limited data samples.
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